

TransCNG International Marine CNG Transport Presented to the ASME/USCG WORKSHOP ON MARINE TECHNOLOGY AND STANDARDS

June 3, 2008
Greg Cano
TransCanada PipeLines Limited

The TransCanada/OSG Partnership

The Partnership between

GTM Composite Reinforced Pressure Vessels

Built to ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case #2390 Code Case Approval -October 2002

Prototype under test

Marine Transport Unit

TCI Process Design

Compression loaded system, the same as most CNG systems in operation today for fueling vehicles and bulk truck transport

Ships operate at ambient temperature

Bulk CNG Transport – Proven Process

Old Style Steel Tube Trailer for CNG Transport

NPT was a subsidiary of NOVA Corporation, a part of the present day TransCanada

New Light Weight GTM Trailer for CNG Transport

ABS Certified

Trailer manufactured by Floating Pipeline Company under license from TransCanada

Process Simulation

Proprietary software allows for quick accurate modeling of GTM conditions.

Process Simulation Continued

Dynamic simulation (VMG) allows us to model piping and loading systems.

GTM Carrier Configuration

Gas Fired Propulsion Systems

GTM General Layout

- Open, ventilated holds with generous inspection access
- Horizontal orientation for inspection of both ends
- Piping connections at one end
- Valves at top of hold above cargo area
- Piping designed for bow or midship loading

Gas Compression and Loading Station

Loading and Unloading - Offshore

Loading & Offloading - Onshore

16" NPS loading arm manufactured by EmcoWheaton

Safety Systems

- SOLAS and IGC (where applicable) Compliant
- Containment system extremely fracture resistant
- Open hold design with environmental protection and 30 air changes per hour where occupied
- Safety procedures for hold entry
- Regular inspection of all systems by crew
- Gas Detection
- Fire Detection
- Containment System Isolation and De-pressurization
- O₂ Monitors in Hold
- Hold Deluge Systems and Bilging

Risk Assessments and Safety Testing

Risk Assessment . Pipeline Integrity . Engineering . GIS . Data Management & Software

RISK ASSESSMENT PERFORMED ON NPS 42 GAS TRANSPORT MODULES FOR INLAND WATERWAY BARGES

Prepared on behalf of TransCanada Pipelines Ltd. by Dynamic Risk Assessment Systems, Inc.

Burn Test

Gunfire Test Video (Click Picture)

Figure 10 Radiation versus distance relationship for the free jet fire

CFD Modeling - Hold Ventilation and Dispersion

CNG Carrier Ventilation and Gas Dispersion Analysis

Figure A.5 - Perspective view of the CFD model (from bow) - Internal surfaces

Figure 4.1d – Velocity contours – Longitudinal plane along centre line

Figure 4.1b – Velocity contours - Transverse plane at mid-distance between aft and forward bulkheads

Vessel Operating Philosophy

Look, Listen, Feel, Smell

Frequent inspections are the key to safe, reliable operation

- All components will wear
- Regular maintenance is required
- Components should be accessible for inspection and maintenance
- Frequent emission and leak monitoring should be performed
- Frequent inspections to "look, listen, feel and smell" prevents major problems from developing

Operations Training and Support

- Safety is a cornerstone of TransCanada/OSG operating philosophy
- Training of crew/staff of marine transportation operator during execution phase at TransCanada training facility in Canada
- Gas safety, handling, gas loading and unloading, operational training and emergency procedures
- Gas maintenance practices, troubleshooting, monitoring and simulations
- Hands on training in operating facilities with the same process conditions as on the ship

Marine CNG Training Facility

